

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The CN Stretch of Insoluble Metal Nitroprussides as a Sensor of Ligand-Outer Cation Interactions

J. Fernández-Bertrán^a; E. Reguera^a

^a National Center for Scientific Research, Havana, Cuba

To cite this Article Fernández-Bertrán, J. and Reguera, E.(1995) 'The CN Stretch of Insoluble Metal Nitroprussides as a Sensor of Ligand-Outer Cation Interactions', *Spectroscopy Letters*, 28: 7, 1015 — 1020

To link to this Article: DOI: 10.1080/00387019508009441

URL: <http://dx.doi.org/10.1080/00387019508009441>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The CN stretch of insoluble metal nitroprussides as a sensor of ligand-outer cation interactions

J. Fernández-Bertrán and E. Reguera

National Center for Scientific Research, P. O. Box 6990, Havana, Cuba

Abstract- The CN frequencies of insoluble metal nitroprussides are correlated with the atomic parameters of the outer cations. The results indicate that the nature of the interaction is predominantly of the σ donor-acceptor type with no relevant π back-donation from the outer cations to the CN ligand.

Introduction

The CN stretching vibrational frequency in hexacyanometallates is controlled by electronic interactions of the CN ligand with the central and outer cations. Both interactions have been described in terms of two mechanisms¹⁻³:

- a) Donation of electrons from the σ orbitals of the CN ligand to the A_{1g} , E_g and T_{1u} orbitals of the cations;
- b) Back donation of T_{2g} electrons from the cations to the empty π^* orbitals of the CN group.

The σ -bonding mechanism increases ν_{CN} while π^* back donation should decrease this frequency^{2,4}. In the interaction of the central cation with the C end of the ligand, both mechanisms are important³ but in the bonding of the N end to the outer cation, the σ mechanism predominates, except in cases of cations with large number of T_{2g} electrons available and low polarizing power Z/r^2 to hold them back (e.g. Ag^+ and Cd^{2+})⁵.

The correlation of ν_{CN} with atomic parameters of the outer cations permits the calculation of the contributions of both mechanism to the CN frequency shifts.

The method has been applied with success to ferricyanides and cobalticyanides⁵, ferrocyanides⁶ and acetonitrile complexes with cationic Lewis acids⁷.

Nitroprussides are an important and interesting family of compounds in which the central divalent low spin Fe^{II} is coordinated to one NO⁺ and five CN⁻ ligands. However, the actual charge of the Fe^{II} atom is increased by strong withdrawal of electrons by π-back donation to the NO⁺ ligand⁸. This increases the polarizing power of the central cation and produces a greater withdrawal of electrons from the CN groups by the σ interaction mechanism, increasing its CN frequency more than 100 cm⁻¹ above that of ferrocyanides and even 30-40 cm⁻¹ higher than ferricyanides^{9,10}.

It would be interesting to explore the nature of the bonding of the CN group to the outer cations in nitroprussides using ν_{CN} vs cation parameters correlations⁵⁻⁷. Unfortunately, the lower symmetry of the Fe^{II}[{CN)₅NO]²⁻ anion (C_{4v}), compared to that of the hexacyano anions (O_h), produces a splitting of the CN bands into four allowed transitions: ν_1 _{CN}(axial), ν_2 _{CN}(radial)(A₁), ν_{10} _{CN}(radial)(B₁) ν_{16} _{CN}(radial)(E₁) [11]. This makes it difficult to apply the method of frequency-cation parameters correlations. However, the insoluble transition metal nitroprussides from Mn to Zn, have only a single broad CN band and are amenable to be studied by this method.

In this communication we present the correlations and discuss the nature of CN-outer cation interactions in transition metal nitroprussides.

Experimental

The synthesis of nitroprussides was carried out by standard procedures as reported in previous works^{12,13}. The products were characterized by IR spectroscopy. They were run as Nujol mulls in a FT-IR (Phillip) spectrometer. The frequency are precise to 1 cm⁻¹. The values of Z/r^2 are taken from the work of Zhang¹⁴.

Results and discussion

The ν_{CN} frequencies of the insoluble nitroprussides from Mn²⁺ to Zn²⁺ are presented in Table 1. The CN stretch is a singlet in the range of 2170-2205 cm⁻¹ with Mn²⁺ and Cu²⁺ at the extremes. If the interaction of the CN group with the outer cation is of σ nature, the shift in ν_{CN} should be linear with

Table 1. Frequency ν_{CN} for nitroprussides and unperturbed ν_{CN}^0 for CH₃CN complexes

No.	Outer Cation	ν_{CN} Nitroprussides	ν_{CN}^0 CH ₃ CN	p_{σ} Z/r^2
1	Mn ²⁺	2174	2290	3.287
2	Fe ²⁺	2179	2295	3.463
3	Co ²⁺	2188	2298	3.652
4	Ni ²⁺	2192	2302	3.858
5	Cu ²⁺	2205	2312	3.858
6	Zn ²⁺	2192	2298	3.652

the polarizing power of the outer cation which attracts the σ electrons of the N end of the ligand:

$$\nu_{\text{CN}} = \nu_{\text{CN}}^0 + b_{\sigma} p_{\sigma} \quad (1)$$

where p_{σ} is the polarizing power of the cation Z/r^2 and b_{σ} measures the sensitivity of the CN vibration to the σ interaction.

In Table 2 the correlation parameters for ν_{CN} vs Z/r^2 are presented. The correlation is good with a value of $r = 0.914$ for six experimental points, giving a confidence level of 99.0%. The errors of the intercept and slope are 1.8 and 22% respectively. We can assume that σ interaction is the predominant mechanism.

In order to evaluate the possible contribution of Π^* back-donation, we correlate ν_{CN} with both σ and Π^* parameters⁵⁻⁷. Since back donation depends on the availability of T_{2g} electrons (n) and the facility of transfer to the Π^* orbital of the CN group is inversely proportional to the polarizing power of the cation (Z/r^2), we use nr^2/Z as the p_{π} parameter of the cation. The correlation equation is now:

$$\nu_{\text{CN}} = \nu_{\text{CN}}^0 + b_{\sigma} p_{\sigma} + b_{\pi} p_{\pi} \quad (2)$$

where p_{π} is nr^2/Z and b_{π} is the sensitivity of the CN vibration in the Π^* interaction.

Table 2. Correlation of ν_{CN} of nitroprussides with p_{σ} and p_{π} of outer cations

Correlation Coefficient (r)	Confidence Level (%CL)	Correlation parameters (b_0 , b_{σ} , b_{π})
0.91	99	b_0 2026 ± 36 b_{σ} 45 ± 10
0.92	99	b_0 2050 ± 67 b_{σ} 35 ± 25 b_{π} 9 ± 20

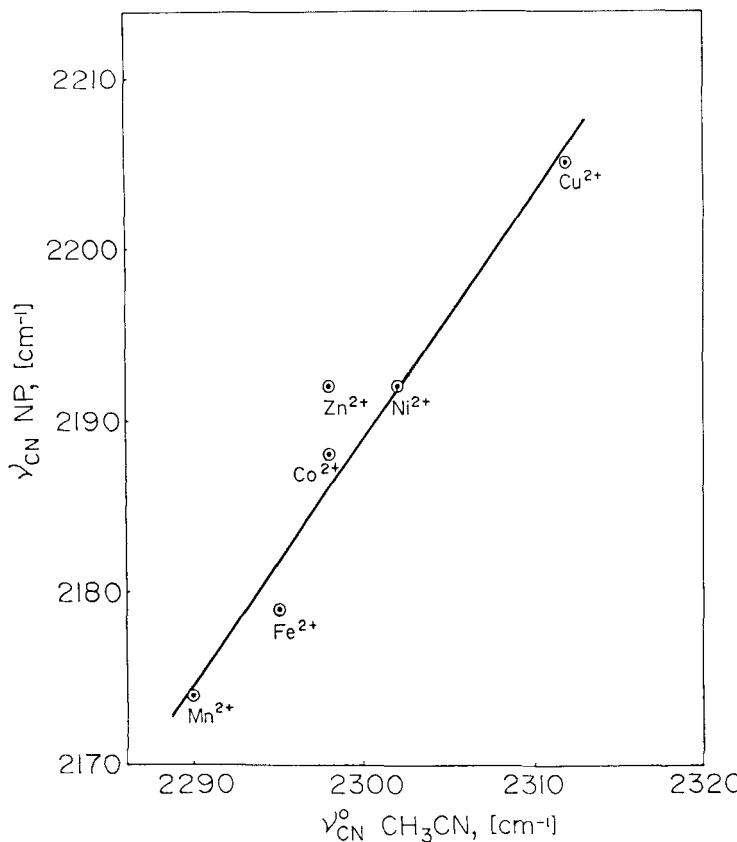


Figure 1. Correlation of ν_{CN} for nitroprussides ($\nu_{\text{CN}} \text{ NP}$) vs ν_{CN}^0 for CH_3CN complexes.

As we can observed in Table 2 the value of r is practically the same and the confidence level remains at 99%. Further more, the errors in the intercept (3.2%) and the coefficients b_{π} and p_{π} (71% and 222%) are much higher than in the previous correlations with Z/r^2 . This clearly indicates that back-donation is not relevant in this CN-outer cation interaction.

We know that the interactions of CH₃CN with Lewis acid cations are due only to σ interactions⁷. In Figure 1 we present a plot of ν_{CN} of nitroprussides vs ν_{CN}^0 of CH₃CN. The excellent correlation with $r = 0.961$ has a confidence level close to 99.9% which is in agreement with σ bonding being the dominant mechanism in the interaction of outer cations with the CN ligands in nitroprussides.

Conclusions

The electronic interactions of CN ligands with the outer cations in transition metal nitroprussides is governed by the polarizing power of the cation Z/r^2 , indicating σ bonding, with no relevant contribution of the back-donation mechanism.

Acknowledgement- The authors thank the help of L. Nuñez in the preparation of the manuscript.

References

1. W. P. Griffith, Q. Rev. (London), 1962, **16**, 188.
2. L. H. Jones, Inorg. Chem., 1963, **2**, 777.
3. C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, Chapter 8. Benjamin, New York (1964)
4. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, p. 182. Wiley Interscience, New York (1970)
5. J. Fernández-Bertrán, J. Blanco-Pascual and E. Reguera, Spectrochim. Acta, 1990, **46A**, 685.
6. J. Fernández-Bertrán, E. Reguera and J. Blanco-Pascual, Spectrochim. Acta, 1990, **46A**, 1679.
7. J. Fernández-Bertrán and E. Reguera, Spectrochim. Acta, 1993, **49A**, 43.
8. P. T. Manoharan and H. B. Gray, Inorg. Chem., 1966, **5**, 823.
9. L. A. Gentil, E. J. Baran and P. J. Aymonino, Inorg. Chim. Acta, 1976, **20**, 251.

10. D. B. Brown, *Inorg. Chem.*, 1975, **14**, 2582.
11. R. K. Khana, C. W. Brown and L. H. Jones, *Inorg. Chem.*, 1969, **8**, 2195.
12. E. Reguera, J. Fernández-Bertrán, J. Miranda and C. Portilla, *J. Radioanal. Nucl. Chem.*, Letters, 1992, **165**, 191.
13. E. Reguera, J. Fernández-Bertrán, J. Miranda and A. Dago, *Hyp. Interact.*, 1993, **77**, 1.
14. Y. Zhang, *Inorg. Chem.*, 1982, **21**, 3889.

Received: April 19, 1995

Accepted: May 30, 1995